96 research outputs found

    Association of Hepatic Lipase and Endothelial Lipase Polymorphisms with Variation in NMR Lipoprotein Subclasses in Caucasian, African-American and African-Caribbean older Men

    Get PDF
    Despite higher prevalence of risk factors for coronary heart disease, men of African origin have less coronary atherosclerosis, as measured by coronary calcification, than Caucasians. In part, this is thought to be due to the less atherogenic lipoprotein profile observed in men of African origin, characterized by lower levels of triglycerides and higher levels of HDL-C. The aim of the present study was to investigate the genetic contribution of two candidate genes, endothelial lipase (LIPG) and hepatic lipase (LIPC), to the ethnic variation in nuclear magnetic resonance (NMR) measured lipoproteins in 600 Caucasian, 100 African-American and 205 Tobago African-Caribbean men, older than 65 years. First, using a set of six ancestry informative markers, we estimated high African genetic contribution in the Tobago population (94%). A more favorable lipoprotein profile was observed in men of African origin compared to Caucasians. The frequency of the LIPG 584T allele in Tobago men (0.06) was five times less common than in Caucasians (0.29) and two times less common than in African-Americans (0.14). In African-Caribbeans, 584T allele was associated with lower small HDL and a greater HDL size, whereas in Caucasians and African-Americans, no significant association was found. Although, the LIPG 584T allele is protective in African-Caribbean men, its frequency is too low to explain the more favorable lipoprotein profile observed in these men. In contrast, the frequency of the LIPC -514T allele (0.57) was somewhat higher than the frequency in African-Americans (0.49), and three times as high as the frequency in Caucasians (0.20). 514C>T interacted with ethnicity to affect the levels of HDL-C, large HDL and HDL and LDL size. Carriers of 514T allele in both populations of African origin, but not in Caucasians, had elevated large HDL and greater HDL size. The higher frequency of the LIPC -514T allele in men of African origin significantly contributes to the more favorable distribution of HDL subclasses compared with Caucasians. Our findings have important public health relevance as they increase our understanding of Black-White differences in lipoprotein distributions, and are likely to increase our understanding of the underlying causes behind the ethnic differences in susceptibility to atherosclerosis

    The Need for Standardized Assessment of Muscle Quality in Skeletal Muscle Function Deficit and Other Aging-Related Muscle Dysfunctions: A Symposium Report

    Get PDF
    A growing body of scientific literature suggests that not only changes in skeletal muscle mass, but also other factors underpinning muscle quality, play a role in the decline in skeletal muscle function and impaired mobility associated with aging. A symposium on muscle quality and the need for standardized assessment was held on April 28, 2016 at the International Conference on Frailty and Sarcopenia Research in Philadelphia, Pennsylvania. The purpose of this symposium was to provide a venue for basic science and clinical researchers and expert clinicians to discuss muscle quality in the context of skeletal muscle function deficit and other aging-related muscle dysfunctions. The present article provides an expanded introduction concerning the emerging definitions of muscle quality and a potential framework for scientific inquiry within the field. Changes in muscle tissue composition, based on excessive levels of inter- and intra-muscular adipose tissue and intramyocellular lipids, have been found to adversely impact metabolism and peak force generation. However, methods to easily and rapidly assess muscle tissue composition in multiple clinical settings and with minimal patient burden are needed. Diagnostic ultrasound and other assessment methods continue to be developed for characterizing muscle pathology, and enhanced sonography using sensors to provide user feedback and improve reliability is currently the subject of ongoing investigation and development. In addition, measures of relative muscle force such as specific force or grip strength adjusted for body size have been proposed as methods to assess changes in muscle quality. Furthermore, performance-based assessments of muscle power via timed tests of function and body size estimates, are associated with lower extremity muscle strength may be responsive to age-related changes in muscle quality. Future aims include reaching consensus on the definition and standardized assessments of muscle quality, and providing recommendations to address critical clinical and technology research gaps within the field

    Low risk for developing diabetes among the offspring of individuals with exceptional longevity and their spouses

    Get PDF
    Little is known about the risk of type 2 diabetes (T2D) among the offspring of individuals with exceptional longevity. We determined the incidence of and potential risk and protective factors for T2D among the offspring of probands and offspring\u27s spouses (mean age=60 years, range 32-88 years) in the Long Life Family Study (LLFS), a multicenter cohort study of 583 two-generation families with a clustering of healthy aging and exceptional longevity. Incident T2D was defined as fasting serum glucose ≄126 mg/dl, or HbA1c of ≄6.5%, or self-reported with doctor diagnosis of T2D, or the use of anti-diabetic medication during a mean follow-up 7.9 ± 1.1 years. Among offspring (n=1105) and spouses (n=328) aged 45-64 years without T2D at baseline visit, the annual incident rate of T2D was 3.6 and 3.0 per 1000 person-years, respectively, while among offspring (n=444) and spouses (n=153) aged 65+ years without T2D at baseline, the annual incident rate of T2D was 7.2 and 7.4 per 1000 person-years, respectively. By comparison, the annual incident rate of T2D per 1000 person-years in the U.S. general population was 9.9 among those aged 45-64, and 8.8 among those aged 65+ years (2018 National Health Interview Survey). Baseline BMI, waist circumference, and fasting serum triglycerides were positively associated with incident T2D, whereas fasting serum HDL-C, adiponectin, and sex hormone binding globulin were protective against incident T2D among the offspring (all P\u3c0.05). Similar associations were observed among their spouses (all P\u3c0.05, except sex hormone binding globulin). In addition, we observed that among spouses, but not offspring, fasting serum interleukin 6 and insulin-like growth factor 1 were positively associated with incident T2D (P\u3c0.05 for both). Our study suggests that both offspring of long-living individuals and their spouses, especially middle-aged, share a similar low risk for developing T2D as compared with the general population. Our findings also raise the possibility that distinct biological risk and protective factors may contribute to T2D risk among offspring of long-lived individuals when compared with their spouses. Future studies are needed to identify the mechanisms underlying low T2D risk among the offspring of individuals with exceptional longevity, and also among their spouses

    Eight common genetic variants associated with serum dheas levels suggest a key role in ageing mechanisms

    Get PDF
    Dehydroepiandrosterone sulphate (DHEAS) is the most abundant circulating steroid secreted by adrenal glands-yet its function is unknown. Its serum concentration declines significantly with increasing age, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. We conducted a meta-analysis of genome-wide association data with 14,846 individuals and identified eight independent common SNPs associated with serum DHEAS concentrations. Genes at or near the identified loci include ZKSCAN5 (rs11761528; p = 3.15×10-36), SULT2A1 (rs2637125; p = 2.61×10-19), ARPC1A (rs740160; p = 1.56×10-16), TRIM4 (rs17277546; p = 4.50×10-11), BMF (rs7181230; p = 5.44×10-11), HHEX (rs2497306; p = 4.64×10-9), BCL2L11 (rs6738028; p = 1.72×10-8), and CYP2C9 (rs2185570; p = 2.29×10-8). These genes are associated with type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins. Several SNPs were associated with changes in gene expression levels, and the related genes are connected to biological pathways linking DHEAS with ageing. This study provides much needed insight into the function of DHEAS

    Genetic association study of adiposity and melanocortin-4 receptor (MC4R) common variants: Replication and functional characterization of non-coding regions

    Get PDF
    Common genetic variants 3â€Č of MC4R within two large linkage disequilibrium (LD) blocks spanning 288 kb have been associated with common and rare forms of obesity. This large association region has not been refined and the relevant DNA segments within the association region have not been identified. In this study, we investigated whether common variants in the MC4R gene region were associated with adiposity-related traits in a biracial population-based study. Single nucleotide polymorphisms (SNPs) in the MC4R region were genotyped with a custom array and a genome-wide array and associations between SNPs and five adiposity-related traits were determined using race-stratified linear regression. Previously reported associations between lower BMI and the minor alleles of rs2229616/Val103Ile and rs52820871/Ile251Leu were replicated in white female participants. Among white participants, rs11152221 in a proximal 3â€Č LD block (closer to MC4R) was significantly associated with multiple adiposity traits, but SNPs in a distal 309 LD block (farther from MC4R ) were not. In a case-control study of severe obesity, rs11152221 was significantly associated. The association results directed our follow-up studies to the proximal LD block downstream of MC4R. By considering nucleotide conservation, the significance of association, and proximity to the MC4R gene, we identified a candidate MC4R regulatory region. This candidate region was sequenced in 20 individuals from a study of severe obesity in an attempt to identify additional variants, and the candidate region was tested for enhancer activity using in vivo enhancer assays in zebrafish and mice. Novel variants were not identified by sequencing and the candidate region did not drive reporter gene expression in zebrafish or mice. The identification of a putative insulator in this region could help to explain the challenges faced in this study and others to link SNPs associated with adiposity to altered MC4R expression. © 2014 Evans et al

    Admixture Mapping of 15,280 African Americans Identifies Obesity Susceptibility Loci on Chromosomes 5 and X

    Get PDF
    The prevalence of obesity (body mass index (BMI) ≄30 kg/m2) is higher in African Americans than in European Americans, even after adjustment for socioeconomic factors, suggesting that genetic factors may explain some of the difference. To identify genetic loci influencing BMI, we carried out a pooled analysis of genome-wide admixture mapping scans in 15,280 African Americans from 14 epidemiologic studies. Samples were genotyped at a median of 1,411 ancestry-informative markers. After adjusting for age, sex, and study, BMI was analyzed both as a dichotomized (top 20% versus bottom 20%) and a continuous trait. We found that a higher percentage of European ancestry was significantly correlated with lower BMI (ρ = −0.042, P = 1.6×10−7). In the dichotomized analysis, we detected two loci on chromosome X as associated with increased African ancestry: the first at Xq25 (locus-specific LOD = 5.94; genome-wide score = 3.22; case-control Z = −3.94); and the second at Xq13.1 (locus-specific LOD = 2.22; case-control Z = −4.62). Quantitative analysis identified a third locus at 5q13.3 where higher BMI was highly significantly associated with greater European ancestry (locus-specific LOD = 6.27; genome-wide score = 3.46). Further mapping studies with dense sets of markers will be necessary to identify the alleles in these regions of chromosomes X and 5 that may be associated with variation in BMI

    Genetic Determinants of Serum Testosterone Concentrations in Men

    Get PDF
    Testosterone concentrations in men are associated with cardiovascular morbidity, osteoporosis, and mortality and are affected by age, smoking, and obesity. Because of serum testosterone's high heritability, we performed a meta-analysis of genome-wide association data in 8,938 men from seven cohorts and followed up the genome-wide significant findings in one in silico (n = 871) and two de novo replication cohorts (n = 4,620) to identify genetic loci significantly associated with serum testosterone concentration in men. All these loci were also associated with low serum testosterone concentration defined as <300 ng/dl. Two single-nucleotide polymorphisms at the sex hormone-binding globulin (SHBG) locus (17p13-p12) were identified as independently associated with serum testosterone concentration (rs12150660, p = 1.2×10−41 and rs6258, p = 2.3×10−22). Subjects with ≄3 risk alleles of these variants had 6.5-fold higher risk of having low serum testosterone than subjects with no risk allele. The rs5934505 polymorphism near FAM9B on the X chromosome was also associated with testosterone concentrations (p = 5.6×10−16). The rs6258 polymorphism in exon 4 of SHBG affected SHBG's affinity for binding testosterone and the measured free testosterone fraction (p<0.01). Genetic variants in the SHBG locus and on the X chromosome are associated with a substantial variation in testosterone concentrations and increased risk of low testosterone. rs6258 is the first reported SHBG polymorphism, which affects testosterone binding to SHBG and the free testosterone fraction and could therefore influence the calculation of free testosterone using law-of-mass-action equation

    Trans-ethnic Meta-analysis and Functional Annotation Illuminates the Genetic Architecture of Fasting Glucose and Insulin

    Get PDF
    Knowledge of the genetic basis of the type 2 diabetes (T2D)-related quantitative traits fasting glucose (FG) and insulin (FI) in African ancestry (AA) individuals has been limited. In non-diabetic subjects of AA (n = 20,209) and European ancestry (EA; n = 57,292), we performed trans-ethnic (AA+EA) fine-mapping of 54 established EA FG or FI loci with detailed functional annotation, assessed their relevance in AA individuals, and sought previously undescribed loci through trans-ethnic (AA+EA) meta-analysis. We narrowed credible sets of variants driving association signals for 22/54 EA-associated loci; 18/22 credible sets overlapped with active islet-specific enhancers or transcription factor (TF) binding sites, and 21/22 contained at least one TF motif. Of the 54 EA-associated loci, 23 were shared between EA and AA. Replication with an additional 10,096 AA individuals identified two previously undescribed FI loci, chrX FAM133A (rs213676) and chr5 PELO (rs6450057). Trans-ethnic analyses with regulatory annotation illuminate the genetic architecture of glycemic traits and suggest gene regulation as a target to advance precision medicine for T2D. Our approach to utilize state-of-the-art functional annotation and implement trans-ethnic association analysis for discovery and fine-mapping offers a framework for further follow-up and characterization of GWAS signals of complex trait loc
    • 

    corecore